CHAPTER 5. Interest Rates. Chapter Synopsis


 Clemence Bond
 5 years ago
 Views:
Transcription
1 CHAPTER 5 Interest Rates Chapter Synopsis 5.1 Interest Rate Quotes and Adjustments Interest rates can compound more than once per year, such as monthly or semiannually. An annual percentage rate (APR) equals the periodic interest rate, r, times the number of compounding periods per year, k. Because it does not include the effect of compounding, an APR understates the amount of interest that will be received if interest compounds more than once per year. To compute the actual amount of interest earned in one year, an APR can be converted to an effective annual rate (EAR), which includes the effect of compounding and provides a measure of the amount of interest that will actually be earned over a year: Converting an APR to an EAR k = APR EAR k The more compounding periods, the greater the EAR. For example, suppose a bank offers a certificate of deposit with an interest rate of 6% APR with monthly compounding. In this case, you will earn 6% / 12 = 0.5% every month. To determine the value of $100 invested for one year, you can either compound over 12 months at the monthly rate of 0.5% or you can 12 compound over one year at the EAR = (1 + ) 1 = 6.17%: FV 1 = $100(1.005) = $100(1.0617) = $ Many loans, such as home mortgages and car loans, have monthly payments and are quoted in terms of an APR with monthly compounding. These types of loans are typically amortizing loans in which each month s payment includes the interest that accrues that month along with some part of the loan s balance. Each monthly payment is the same, and the loan is fully repaid with the final payment. Since the loan balance declines over time, the interest portion
2 44 Berk/DeMarzo Corporate Finance, Second Edition of the payment declines over time while the principal repayment portion increases. The number of compounding periods is generally equal to the number of payments per year by convention. For example, suppose you are offered a $30,000 car loan at 6.75% APR for 60 months. You can find the monthly payment using the PV of an annuity equation: 1 1 $30,000 = C 1 C = $ ( ) In the first month, interest equals $30,000( ) = $ and the loan s balance is reduced by $ = $ to $29, In the second month, interest equals $29,578.25( ) = $ and the loan s balance is reduced by $ = $ to $29, This process continues until the beginning of the 60th month when the loan balance will be $578.20, so interest equals $587.20( ) = $3.30 and the loan s balance is reduced by $ = $ to $0. A tabular depiction of this process is called an amortization table. 5.2 Application: Discount Rates and Loans To calculate a loan payment, you first equate the outstanding loan balance with the present value of the loan payments using the discount rate from the quoted interest rate of the loan and then solve for the loan payment. Many loans, such as mortgages and car loans, have monthly payments and are quoted in terms of an APR with monthly compounding. These types of loans are amortizing loans, which means that each month you pay interest on the loan plus some part of the loan balance. Each monthly payment is the same, and the loan is fully repaid with the final payment. Typical terms for a new car loan might be 6.75% APR for 60 months. This quote means that the loan will be repaid with 60 equal monthly payments, computed using a 6.75% APR with monthly compounding. The payment, C, is set so that the present value of the cash flows, evaluated using the loan interest rate, equals the original principal amount of $30,000. So, using the annuity formula to compute the present value of the loan payments, the payment C must satisfy 1 1 C 1 30, = ( ) 30,000 and therefore, C = = $ ( ) Alternatively, we can solve for the payment C using the annuity spreadsheet: 5.3 The Determinants of Interest Rates Nominal interest rates, which indicate the actual rate at which interest will accrue, are typically stated in loan agreements and quoted in financial markets. If prices in the economy are also growing due to inflation, the nominal interest rate does not represent the increase in
3 Berk/DeMarzo Corporate Finance, Second Edition 45 purchasing power that will result from investing at this rate. The rate of growth of purchasing power, after adjusting for inflation, is determined by the real interest rate, rr. If r is the nominal interest rate and i is the rate of inflation, the real rate can be calculated as follows. The Real Interest Rate r i r = 1 + i Interest rates affect firms incentives to raise capital and invest as well as individuals propensities to save. For example, an increase in interest rates will generally decrease an investment s NPV and reduce the number of positivenpv investments available to firms. The U.S. Federal Reserve as well as central banks in other countries use this idea to try and influence economic activity. Central banks can lower interest rates to stimulate investment if the economy is slowing and raise interest rates to reduce investment if the economy is perceived to be growing too fast,which may lead to an increase in the inflation rate. Interest rates generally depend on the horizon, or term, of the investment or loan. The relation between an investment s term and its interest rate is called the term structure of interest rates, and it can be plotted on a graph called the yield curve. Common equations used for computing present values, such as the annuity and perpetuity formulas, are based on discounting all of the cash flows at the same rate. In situations in which cash flows need to be discounted at different rates depending on when they occur, the following equation can be used: C C C C PV = + = N 1 2 N n L n + r1 + r2 + rn n= 0 ( + rn ) The Federal Reserve determines shortterm interest rates through its influence on the federal funds rate, which is the rate at which banks can borrow cash reserves over one night. All other interest rates on the yield curve are set in the market and are adjusted until the supply of lending matches the demand for borrowing at each loan term. Expectations of future interest rate changes have a major effect on investors willingness to lend or borrow for longer terms and, therefore, on the shape of the yield curve. An increasing yield curve, with longterm rates higher than shortterm rates, generally indicates that interest rates are expected to rise in the future. A decreasing (inverted) yield curve, with longterm rates lower than shortterm rates, generally signals an expected decline in future interest rates. Because interest rates tend to drop in response to an economic slowdown, an inverted yield curve is often interpreted as a negative economic forecast. 5.4 Risk and Taxes U.S. Treasury securities are widely regarded as riskfree because there is virtually no chance the U.S. government will fail to pay the interest or default on these bonds; thus, the rate on Treasury securities is often referred to as the riskfree rate. All other borrowers are generally assumed to have some risk of default. For these loans, the stated interest rate is the maximum amount that investors will receive. Investors may receive less if the company is unable to fully repay the loan. To compensate for the risk that they will receive less if the firm defaults, investors demand a higher interest rate than the rate on U.S. Treasuries. The difference between the interest rate of the loan and the Treasury rate is called the credit spread. If the cash flows from an investment are taxed, the net cash flow that the investor will receive will be reduced by the amount of the taxes paid. In general, if the interest rate is r and the tax rate isτ, then for each $1 invested you will earn interest equal to r and owe tax of τ r on
4 46 Berk/DeMarzo Corporate Finance, Second Edition the interest. Thus, the equivalent aftertax interest rate is r (1 τ ). For example, if an investment pays 8% interest for one year, and you invest $100 at the start of the year, you will earn 8% $100 = $8 in interest at yearend. If you must pay taxes at 40% on this interest, you will owe 40% $8 = $3.20. Thus you will receive only $8 $3.20 = $4.80 after paying taxes. This amount is equivalent to earning 4.80% interest and not paying any taxes, so the aftertax interest rate is r (1 τ ) = 8%(1.40) = 4.80%. 5.5 The Opportunity Cost of Capital The discount rate used to evaluate cash flows is the cost of capital, or opportunity cost of capital, which is the best available expected return offered in the market on an investment of comparable risk and term to the cash flow being discounted. The cost of capital is the return the investor forgoes when making a new investment. For a riskfree project, it will typically correspond to the interest rate on U.S. Treasury securities with a similar term. For risky projects, it will include a risk premium. Selected Concepts and Key Terms Amortizing Loan A loan in which each month you pay interest on the loan plus some part of the loan principal, or amount borrowed. Each monthly payment is the same, and the loan is fully repaid with the final payment. Since the loan balance declines over time, the interest portion of the payment declines over time while the principal repayment portion increases. Annual Percentage Rate (APR) The periodic interest rate, r, times the number of compounding periods per year, k. Because it does not include the effect of compounding, the APR quote is less than the actual amount of interest that will be received if k > 1. Opportunity Cost of Capital The best available expected return offered in the market on an investment of comparable risk and term to the cash flow being discounted. The cost of capital is the return the investor forgoes when the making a new investment. For a riskfree project, it will typically correspond to the interest rate on U.S. Treasury securities with a similar term. For risky projects, it will include a risk premium. Credit Spread The difference between the interest rate of the loan and the riskfree Treasury security rate. Effective Annual Rate (EAR) The amount of interest that will be earned over a year. The more compounding periods, the greater the EAR for a given APR. Nominal Interest Rate The actual rate at which money will grow. Nominal rates are typically stated in loan agreements and quoted in financial markets. If prices in the economy are also growing due to
5 Berk/DeMarzo Corporate Finance, Second Edition 47 inflation, the nominal interest rate does not represent the increase in purchasing power that will result from investing at the nominal rate. Real Interest Rate The rate of growth of purchasing power after adjusting for inflation. Term Structure The relation between an investment s term and its interest rate is called the term structure of interest rates, and it can be plotted on a graph called the yield curve. Concept Check Questions and Answers What is the difference between an EAR and an APR quote? An annual percentage rate is the rate that interest earns in one year before the effect of compounding. An effective annual rate is the rate that the amount of interest actually earns at the end of one year. Because the APR does not include the effect of compounding, it is typically less than the EAR Why can t the APR be used as a discount rate? Because the APR does not reflect the true amount you will earn one year, the APR itself cannot be used as a discount rate How can you compute the outstanding balance on a loan? The outstanding balance can be computed by constructing an amortization table or by finding the present value of the remaining payments What is an amortizing loan? It is a loan in which each month you pay interest on the loan plus some part of the loan principal, or amount borrowed. Each monthly payment is the same, and the loan is fully repaid with the final payment. Since the loan balance declines over time, the interest portion of the payment declines over time while the principal repayment portion increases What is the difference between a nominal and real interest rate? The nominal interest rate is the rate quoted by banks and other financial institutions, whereas the real interest rate is the rate of growth of purchasing power, after adjusting for inflation. The real interest rate is approximately equal to the nominal rate less the rate of inflation How do investors expectations of future shortterm interest rates affect the shape of the current yield curve? The shape of the yield curve tends to vary with investors expectations of future economic growth and interest rates. It tends to be inverted prior to recessions and to be steep coming out of a recession Why do corporations pay higher interest rates on their loans than the U.S. government? Corporations pay higher interest rates on their loans than the U.S. government does because all corporations have some risk of default, while there is virtually no chance the U.S. government will fail to pay the interest or default on the loans.
6 48 Berk/DeMarzo Corporate Finance, Second Edition How do taxes affect the interest earned on an investment? What about the interest paid on a loan? The interest the investor earned on an investment is taxable and will be reduced by the amount of the tax payments. In some cases, since the interest on loans is tax deductible, the cost of paying interest on the loan is offset by the benefit of the tax deduction What is the opportunity cost of capital? The opportunity cost of capital is the best available return offered in the market on an investment of comparable risk and term to the cash flow being discounted Why do different interest rates exist, even in a competitive market? The interest rates we observe in the market will vary based on quoting conventions, the term of investment, and risk. The actual return kept by an investor will also depend on how the interest is taxed. Examples with StepbyStep Solutions Solving Problems Problems using the concepts in this chapter often involve solving problems using the valuation equations in Chapter 4. It is helpful to represent the cash flows involved on a timeline, and it is important to use the correct periodic interest rate. For instance, in example 1 below, the loan involves monthly payments at a 6% APR with monthly compounding, so the correct rate to use is the monthly rate = 6% / 12 = 0.5%. Other problems may involve finding real cash flows. To do this, it is generally necessary to calculate and use real interest rates using the relation between nominal rates, real rates and inflation. Example 2 below provides such an example. Finally, problems may involve understanding the mechanics of an amortizing loan, as in example 3 below. Examples 1. You want to buy a vacation house in Hood River, Oregon, by borrowing $400,000. [A] If you obtain a 30year loan at 6% APR with monthly compounding, what is your monthly payment? How much goes to interest and how much to principal over the loan s life? [B] If you obtain a 15year loan at 6% APR with monthly compounding, what is your monthly payment? How much goes to interest and how much to principal over the loan s life? Step 1: Put the known and unknown cash flows on a timeline. The 30year Loan. Year 0 30 Month PV=400,000 C C C The 15year Loan.
7 Berk/DeMarzo Corporate Finance, Second Edition 49 Year 0 15 Month PV=400,000 C C C Step 2: Since this problem involves the present value of an annuity in which C is unknown, set the PV of annuity equation equal to $400,000 with r = 0.05 and N = 360 months for part [A] and 180 months for part [B]. Solve for C to get each loan s payment. 1 1 [A]$400,000 = C = $2, (1.005) 360 C 1 1 [B]$400,000 = C = $3, (1.005) 180 C Step 3. Once the payment is calculated, you can calculate the total interest paid as the total payments made minus the $400,000 principal that was paid. [A] Total = 360(2,398.20) = 863,353 Principal = 400,000 = Interest = 463,353 [B] Total = 180(3,375.48) = 607,577 Principal = 400,000 = Interest = 207,577 Thus, the payment and interest paid is $2,398 and $463,353 for the 30year loan and $3,375 and $207,577 for the 15year loan. 2. You plan on drawing on retirement income exactly 30 years from today. You have liquidated $1 million worth of investments and are going to move to Spain, taking whatever cash is left after funding your retirement account. You want the retirement account to pay exactly $10,000 per month in today s (real) dollars for 20 years. You are going to place enough into an account yielding a nominal 12% APR, or 1% per month. At retirement, you will place the accumulated money into an account yielding a nominal 6% APR, which compounds monthly at 0.5%, and remove cash from this account according to the payment schedule. You expect that inflation will be 0.25% per month. What payment to the 12% account is required to fund the retirement plan? Step 1. Put the cash flows that are known and unknown on a timeline.
8 50 Berk/DeMarzo Corporate Finance, Second Edition Year Take out Put in ,000 10,000 PV0 (The PV of the month 360 value) PV30 (The PV of the 240 monthly payments) Step 2. Determine the type or types of valuation problems involved. This problem can be solved using the following additional steps 3 6: [3] find the real monthly interest rates in the first 30 years and last 20 years, [4] find the present value in real terms in year 30 of the $10,000 payments in months , [5] find the present value of the year 30 value found in step 4, [6] subtract the value in step 5 from the $1 million. Step 3. The real rates are: Years r i rreal = = r = 0.25% per month. 1 + i real Years 130 r i r real = = r 0.75% per month. 1 + i real Step 4. Using the present value of an annuity equation: 1 1 PV30 = 10,000 = $1,803,109 in real dollars (1.0025) Step 5. Using the PV of a single cash flow equation: Step 6. Make a conclusion. 1,803,109 PV = = $122, (1.0075) You can take $1,000,000 $122,406 = $877,594 with you and put the rest in the account. 3. The Boston Beer Company is shopping for a new bottling machine. The machine has a manufacturer s suggested retail price of $350,000. [A] Dealer A offers to sell them the machine for $290,000 with a 6% APR monthly amortizing 10year loan. Dealer B will charge the full $350,000 but offers them 0% APR monthly payment loan with financing over 10 years. Which of these two options is a better deal? [B] If they decide to buy the machine from dealer A, how much of the first two payments goes to paying down the $290,000 principal? How much is interest?
9 Berk/DeMarzo Corporate Finance, Second Edition 51 [C] If they decide to buy the machine from dealer A and sell it in three years, how much must they sell it for in order to pay back the remaining balance of the loan? (Ignore tax effects.) Step 1. To answer part [A], you need to determine which payment option has the lowest present value. Since both options have the same term and monthly payments, this is the same as finding which option has the lowest payment. Using the PV of an annuity equation: 1 1 $290,000 = C C= $3, is the payment for dealer A (1.005) $350,000 = $2, is the payment for dealer B. 120 Also, note that the present value of dealer B s payments at 6% APR is $262,714 which is less than the present value of dealer A s payments at 6% APR, $290,000. Thus, you should select dealer B. Step 2. To answer part [B] of the problem, you can construct the first two months of an amortization table with a payment of $3,219.59, an original balance of $290,000, and a periodic (monthly) interest rate of 6% / 12 = 0.50%: Month Principal Interest=0.005 x Principal Payment Ending Balance 1 290, , , , , , , , Now, calculate the principal repaid = 290, , = $3, After two months, the total principal repaid is $3, and the total interest paid is 2(3,219.59) $3, = 1, , = $2, Step 3. To answer part [C] you could construct an amortization table, but without the aid of a spreadsheet this would be too timeconsuming. Thus, you can solve for the present value of the remaining payments, which must be the remaining balance of the loan. Using the present value of an annuity equation with C = $3,219.59, r = 6%/12 = 0.5%, and N = = 84: ( 84 ) 3, PV = 1 = $220, ( 1.005) Thus, they must sell it for at least $220, or else they will have to pay off some of the balance with cash from a different source. Questions and Problems 1. You won $1 in million the Lottery. The prize is paid out in equal, semiannual payments over 50 years with the first payment immediately. GenexCapital.com has offered to buy the ticket for $250,000 in cash today. In the contract, they claim to be using an 8% APR with semiannual compounding. Are they? (Ignore taxes) 2. You have a $50,000 balance on your credit card, and you have set your Wells Fargo checking account bill pay for monthly payments of $1,000. The interest rate is 18% APR with monthly
10 52 Berk/DeMarzo Corporate Finance, Second Edition compounding. How many years until you have paid it off? How long would it take if your balance was $70,000? 3. You are considering paying for a 2006 Mercedes SLK 350 with an MSRP of $50,000 using a 5year loan. Based on the MSRP, the dealer s finance manager has quoted you a zero down, 4.8% APR (compounded monthly) loan with a payment of $ and your first payment is due one month from today. [A] Is the rate you would be paying really 4.8% APR? [B] For every $500 that you get the dealer to lower the price of the car at a 4.8% APR, how much does your monthly payment decrease? [C] Based on a price of $45,000, how much would your down payment need to be to make your payments equal $700 per month at 4.8% APR? 4. You have decided to refinance your mortgage. You plan to borrow whatever is outstanding on your current mortgage. The current monthly payment is $5,200, and there are exactly 27 years left on the loan. You have just made your 36th monthly payment and the mortgage interest rate is 6% APR. How much do you owe on the mortgage today? 5. You have just sold your house for $2,000,000. Your mortgage was originally a 30year mortgage with monthly payments, and an initial balance of $400,000. The mortgage is exactly 10 years old, and you have just made a monthly payment. If the fixed interest rate on the mortgage is 3.6% (APR), how much will you have from the sale once you pay off the mortgage? Solutions to Questions and Problems 1. If they are paying 8% APR (4% per six months), then the PV of the annuity payments at this rate must be $250, PV = $10, ,000 = $254,852 > $250, (1.04) Since they are paying less than $250,000, they are using a bit higher rate. 1 1 The actual rate is: $10, ,000 = $250,000 APR 8.175%. 99 r r(1 + r) 2. This is a present value of an annuity problem in which you must solve for N. 1 1 $1,000 $50, (1.015) N = T = months, or about 7 years and 10 months. For the $70,000 balance, note that if you paid $1,000 in perpetuity: $1,000 = $66,667, so you could never pay it off, since $70,000 > $66,
11 Berk/DeMarzo Corporate Finance, Second Edition [A] The actual payment at 4.8% APR would be: ,000 = C C = $ (1.004) So the actual rate is higher. The implied rate in the payment can be found as follows: ,000 = r = 0.5%, or 6% APR. 60 r r(1 + r) 1 1 [B] $500 = C C = $ (1.004) So, for every $500 reduction, the payment would decrease by $ $45,000 = 700 Down Payment [C] (1.004) Down Payment = $45,000 $37,274 = $7, To find out what is owed, compute the PV of the remaining payments: ( 324 ) 5,200 1 PV = 1 = $833, ( 1.005) 5. First compute the original loan payment: 400, C = = $1, ( 1.003) Now compute the PV of continuing to make these payments. Using the formula for the PV of an annuity: 1 1 PV=1, = $310, ( 1.003) So you would get to keep $2,000,000 $310, = $1,689,
5.5 The Opportunity Cost of Capital
Problems 161 The correct discount rate for a cash flow is the expected return available in the market on other investments of comparable risk and term. If the interest on an investment is taxed at rate
More informationPowerPoint. to accompany. Chapter 5. Interest Rates
PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When
More informationChapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams
Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present
More information1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?
Chapter 2  Sample Problems 1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will $247,000 grow to be in
More informationChapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1
Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY 1. The simple interest per year is: $5,000.08 = $400 So after 10 years you will have: $400 10 = $4,000 in interest. The total balance will be
More informationDISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS
Chapter 5 DISCOUNTED CASH FLOW VALUATION and MULTIPLE CASH FLOWS The basic PV and FV techniques can be extended to handle any number of cash flows. PV with multiple cash flows: Suppose you need $500 one
More informationAnswers to Review Questions
Answers to Review Questions 1. The real rate of interest is the rate that creates an equilibrium between the supply of savings and demand for investment funds. The nominal rate of interest is the actual
More informationCHAPTER 4. The Time Value of Money. Chapter Synopsis
CHAPTER 4 The Time Value of Money Chapter Synopsis Many financial problems require the valuation of cash flows occurring at different times. However, money received in the future is worth less than money
More informationFinding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY Answers to Concepts Review and Critical Thinking Questions 1. The four parts are the present value (PV), the future value (FV), the discount
More informationDiscounted Cash Flow Valuation
Discounted Cash Flow Valuation Chapter 5 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationCheck off these skills when you feel that you have mastered them.
Chapter Objectives Check off these skills when you feel that you have mastered them. Know the basic loan terms principal and interest. Be able to solve the simple interest formula to find the amount of
More informationDiscounted Cash Flow Valuation
6 Formulas Discounted Cash Flow Valuation McGrawHill/Irwin Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved. Chapter Outline Future and Present Values of Multiple Cash Flows Valuing
More informationCHAPTER 6 DISCOUNTED CASH FLOW VALUATION
CHAPTER 6 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. The four pieces are the present value (PV), the periodic cash flow (C), the discount rate (r), and
More informationKey Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued
6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationCHAPTER 4 DISCOUNTED CASH FLOW VALUATION
CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. Assuming positive cash flows and interest rates, the future value increases and the present value
More informationChapter 22: Borrowings Models
October 21, 2013 Last Time The Consumer Price Index Real Growth The Consumer Price index The official measure of inflation is the Consumer Price Index (CPI) which is the determined by the Bureau of Labor
More informationFNCE 301, Financial Management H Guy Williams, 2006
REVIEW We ve used the DCF method to find present value. We also know shortcut methods to solve these problems such as perpetuity present value = C/r. These tools allow us to value any cash flow including
More informationChapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.
Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values
More informationClick Here to Buy the Tutorial
FIN 534 Week 4 Quiz 3 (Str) Click Here to Buy the Tutorial http://www.tutorialoutlet.com/fin534/fin534week4quiz3 str/ For more course tutorials visit www.tutorialoutlet.com Which of the following
More informationChapter 2 Present Value
Chapter 2 Present Value Road Map Part A Introduction to finance. Financial decisions and financial markets. Present value. Part B Valuation of assets, given discount rates. Part C Determination of riskadjusted
More informationCompound Interest Formula
Mathematics of Finance Interest is the rental fee charged by a lender to a business or individual for the use of money. charged is determined by Principle, rate and time Interest Formula I = Prt $100 At
More informationCALCULATOR TUTORIAL. Because most students that use Understanding Healthcare Financial Management will be conducting time
CALCULATOR TUTORIAL INTRODUCTION Because most students that use Understanding Healthcare Financial Management will be conducting time value analyses on spreadsheets, most of the text discussion focuses
More informationChapter 4: Time Value of Money
FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)
More informationCHAPTER 8 INTEREST RATES AND BOND VALUATION
CHAPTER 8 INTEREST RATES AND BOND VALUATION Answers to Concept Questions 1. No. As interest rates fluctuate, the value of a Treasury security will fluctuate. Longterm Treasury securities have substantial
More information2. How would (a) a decrease in the interest rate or (b) an increase in the holding period of a deposit affect its future value? Why?
CHAPTER 3 CONCEPT REVIEW QUESTIONS 1. Will a deposit made into an account paying compound interest (assuming compounding occurs once per year) yield a higher future value after one period than an equalsized
More informationTime Value Conepts & Applications. Prof. Raad Jassim
Time Value Conepts & Applications Prof. Raad Jassim Chapter Outline Introduction to Valuation: The Time Value of Money 1 2 3 4 5 6 7 8 Future Value and Compounding Present Value and Discounting More on
More informationChapter 6 Interest Rates and Bond Valuation
Chapter 6 Interest Rates and Bond Valuation Solutions to Problems P61. P62. LG 1: Interest Rate Fundamentals: The Real Rate of Return Basic Real rate of return = 5.5% 2.0% = 3.5% LG 1: Real Rate of Interest
More informationThe Time Value of Money
The following is a review of the Quantitative Methods: Basic Concepts principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: The Time
More informationProblem Set: Annuities and Perpetuities (Solutions Below)
Problem Set: Annuities and Perpetuities (Solutions Below) 1. If you plan to save $300 annually for 10 years and the discount rate is 15%, what is the future value? 2. If you want to buy a boat in 6 years
More informationDiscounted Cash Flow Valuation
BUAD 100x Foundations of Finance Discounted Cash Flow Valuation September 28, 2009 Review Introduction to corporate finance What is corporate finance? What is a corporation? What decision do managers make?
More informationPresent Value Concepts
Present Value Concepts Present value concepts are widely used by accountants in the preparation of financial statements. In fact, under International Financial Reporting Standards (IFRS), these concepts
More informationHOW TO CALCULATE PRESENT VALUES
Chapter 2 HOW TO CALCULATE PRESENT VALUES Brealey, Myers, and Allen Principles of Corporate Finance 11th Edition McGrawHill/Irwin Copyright 2014 by The McGrawHill Companies, Inc. All rights reserved.
More informationChapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS
Chapter 4 Time Value of Money ANSWERS TO ENDOFCHAPTER QUESTIONS 41 a. PV (present value) is the value today of a future payment, or stream of payments, discounted at the appropriate rate of interest.
More information2 The Mathematics. of Finance. Copyright Cengage Learning. All rights reserved.
2 The Mathematics of Finance Copyright Cengage Learning. All rights reserved. 2.3 Annuities, Loans, and Bonds Copyright Cengage Learning. All rights reserved. Annuities, Loans, and Bonds A typical definedcontribution
More informationExercise 1 for Time Value of Money
Exercise 1 for Time Value of Money MULTIPLE CHOICE 1. Which of the following statements is CORRECT? a. A time line is not meaningful unless all cash flows occur annually. b. Time lines are useful for visualizing
More informationIntegrated Case. 542 First National Bank Time Value of Money Analysis
Integrated Case 542 First National Bank Time Value of Money Analysis You have applied for a job with a local bank. As part of its evaluation process, you must take an examination on time value of money
More informationEXAM 2 OVERVIEW. Binay Adhikari
EXAM 2 OVERVIEW Binay Adhikari FEDERAL RESERVE & MARKET ACTIVITY (BS38) Definition 4.1 Discount Rate The discount rate is the periodic percentage return subtracted from the future cash flow for computing
More informationTime Value of Money. Background
Time Value of Money (Text reference: Chapter 4) Topics Background One period case  single cash flow Multiperiod case  single cash flow Multiperiod case  compounding periods Multiperiod case  multiple
More informationFinQuiz Notes 2 0 1 4
Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.
More information5. Time value of money
1 Simple interest 2 5. Time value of money With simple interest, the amount earned each period is always the same: i = rp o We will review some tools for discounting cash flows. where i = interest earned
More information10. Time Value of Money 2: Inflation, Real Returns, Annuities, and Amortized Loans
10. Time Value of Money 2: Inflation, Real Returns, Annuities, and Amortized Loans Introduction This chapter continues the discussion on the time value of money. In this chapter, you will learn how inflation
More informationSolutions Manual. Corporate Finance. Ross, Westerfield, and Jaffe 9 th edition
Solutions Manual Corporate Finance Ross, Westerfield, and Jaffe 9 th edition 1 CHAPTER 1 INTRODUCTION TO CORPORATE FINANCE Answers to Concept Questions 1. In the corporate form of ownership, the shareholders
More informationBond valuation. Present value of a bond = present value of interest payments + present value of maturity value
Bond valuation A reading prepared by Pamela Peterson Drake O U T L I N E 1. Valuation of longterm debt securities 2. Issues 3. Summary 1. Valuation of longterm debt securities Debt securities are obligations
More informationChapter 6 Interest rates and Bond Valuation. 2012 Pearson Prentice Hall. All rights reserved. 41
Chapter 6 Interest rates and Bond Valuation 2012 Pearson Prentice Hall. All rights reserved. 41 Interest Rates and Required Returns: Interest Rate Fundamentals The interest rate is usually applied to
More informationCHAPTER 4 DISCOUNTED CASH FLOW VALUATION
CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Solutions to Questions and Problems NOTE: Allendof chapter problems were solved using a spreadsheet. Many problems require multiple steps. Due to space and readability
More informationLOS 56.a: Explain steps in the bond valuation process.
The following is a review of the Analysis of Fixed Income Investments principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: Introduction
More informationFinQuiz Notes 2 0 1 5
Reading 5 The Time Value of Money Money has a time value because a unit of money received today is worth more than a unit of money to be received tomorrow. Interest rates can be interpreted in three ways.
More informationInterest Rates and Bond Valuation
Interest Rates and Bond Valuation Chapter 6 Key Concepts and Skills Know the important bond features and bond types Understand bond values and why they fluctuate Understand bond ratings and what they mean
More informationCalculating interest rates
Calculating interest rates A reading prepared by Pamela Peterson Drake O U T L I N E 1. Introduction 2. Annual percentage rate 3. Effective annual rate 1. Introduction The basis of the time value of money
More informationFIN 3000. Chapter 6. Annuities. Liuren Wu
FIN 3000 Chapter 6 Annuities Liuren Wu Overview 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams Learning objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate
More informationBusiness 2019. Fundamentals of Finance, Chapter 6 Solution to Selected Problems
Business 209 Fundamentals of Finance, Chapter 6 Solution to Selected Problems 8. Calculating Annuity Values You want to have $50,000 in your savings account five years from now, and you re prepared to
More informationChapter Review and SelfTest Problems. Answers to Chapter Review and SelfTest Problems
236 PART THREE Valuation of Future Cash Flows Chapter Review and SelfTest Problems 7.1 Bond Values A Microgates Industries bond has a 10 percent coupon rate and a $1,000 face value. Interest is paid semiannually,
More informationFNCE 301, Financial Management H Guy Williams, 2006
Review In the first class we looked at the value today of future payments (introduction), how to value projects and investments. Present Value = Future Payment * 1 Discount Factor. The discount factor
More informationCHAPTER 2. Time Value of Money 21
CHAPTER 2 Time Value of Money 21 Time Value of Money (TVM) Time Lines Future value & Present value Rates of return Annuities & Perpetuities Uneven cash Flow Streams Amortization 22 Time lines 0 1 2 3
More informationAppendix C 1. Time Value of Money. Appendix C 2. Financial Accounting, Fifth Edition
C 1 Time Value of Money C 2 Financial Accounting, Fifth Edition Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount. 3. Solve for future
More informationFin 3312 Sample Exam 1 Questions
Fin 3312 Sample Exam 1 Questions Here are some representative type questions. This review is intended to give you an idea of the types of questions that may appear on the exam, and how the questions might
More informationModule 5: Interest concepts of future and present value
Page 1 of 23 Module 5: Interest concepts of future and present value Overview In this module, you learn about the fundamental concepts of interest and present and future values, as well as ordinary annuities
More informationFI 302, Business Finance Exam 2, Fall 2000 versions 1 & 8 KEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEY
FI 302, Business Finance Exam 2, Fall 2000 versions 1 & 8 KEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEYKEY 1. (3 points) BS16 What is a 401k plan Most U.S. households single largest lifetime source of savings is
More informationTopics in Chapter. Key features of bonds Bond valuation Measuring yield Assessing risk
Bond Valuation 1 Topics in Chapter Key features of bonds Bond valuation Measuring yield Assessing risk 2 Determinants of Intrinsic Value: The Cost of Debt Net operating profit after taxes Free cash flow
More informationANALYSIS OF FIXED INCOME SECURITIES
ANALYSIS OF FIXED INCOME SECURITIES Valuation of Fixed Income Securities Page 1 VALUATION Valuation is the process of determining the fair value of a financial asset. The fair value of an asset is its
More informationSOCIETY OF ACTUARIES FINANCIAL MATHEMATICS. EXAM FM SAMPLE QUESTIONS Interest Theory
SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS Interest Theory This page indicates changes made to Study Note FM0905. January 14, 2014: Questions and solutions 58 60 were
More informationChapter 4. The Time Value of Money
Chapter 4 The Time Value of Money 1 Learning Outcomes Chapter 4 Identify various types of cash flow patterns Compute the future value and the present value of different cash flow streams Compute the return
More informationUnderstanding Fixed Income
Understanding Fixed Income 2014 AMP Capital Investors Limited ABN 59 001 777 591 AFSL 232497 Understanding Fixed Income About fixed income at AMP Capital Our global presence helps us deliver outstanding
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
Chapter  The Term Structure of Interest Rates CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
More informationChapter 3 Present Value and Securities Valuation
Chapter 3 Present Value and Securities Valuation The objectives of this chapter are to enable you to:! Value cash flows to be paid in the future! Value series of cash flows, including annuities and perpetuities!
More informationCHAPTER 6. Accounting and the Time Value of Money. 2. Use of tables. 13, 14 8 1. a. Unknown future amount. 7, 19 1, 5, 13 2, 3, 4, 6
CHAPTER 6 Accounting and the Time Value of Money ASSIGNMENT CLASSIFICATION TABLE (BY TOPIC) Topics Questions Brief Exercises Exercises Problems 1. Present value concepts. 1, 2, 3, 4, 5, 9, 17, 19 2. Use
More informationChapter 5 Time Value of Money 2: Analyzing Annuity Cash Flows
1. Future Value of Multiple Cash Flows 2. Future Value of an Annuity 3. Present Value of an Annuity 4. Perpetuities 5. Other Compounding Periods 6. Effective Annual Rates (EAR) 7. Amortized Loans Chapter
More informationActivity 3.1 Annuities & Installment Payments
Activity 3.1 Annuities & Installment Payments A Tale of Twins Amy and Amanda are identical twins at least in their external appearance. They have very different investment plans to provide for their retirement.
More informationIf P = principal, r = annual interest rate, and t = time (in years), then the simple interest I is given by I = P rt.
13 Consumer Mathematics 13.1 The Time Value of Money Start with some Definitions: Definition 1. The amount of a loan or a deposit is called the principal. Definition 2. The amount a loan or a deposit increases
More informationMathematics. Rosella Castellano. Rome, University of Tor Vergata
and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings
More informationChapter 7 SOLUTIONS TO ENDOFCHAPTER PROBLEMS
Chapter 7 SOLUTIONS TO ENDOFCHAPTER PROBLEMS 71 0 1 2 3 4 5 10% PV 10,000 FV 5? FV 5 $10,000(1.10) 5 $10,000(FVIF 10%, 5 ) $10,000(1.6105) $16,105. Alternatively, with a financial calculator enter the
More informationInterest Rates and Bond Valuation
and Bond Valuation 1 Bonds Debt Instrument Bondholders are lending the corporation money for some stated period of time. Liquid Asset Corporate Bonds can be traded in the secondary market. Price at which
More informationFinance CHAPTER OUTLINE. 5.1 Interest 5.2 Compound Interest 5.3 Annuities; Sinking Funds 5.4 Present Value of an Annuity; Amortization
CHAPTER 5 Finance OUTLINE Even though you re in college now, at some time, probably not too far in the future, you will be thinking of buying a house. And, unless you ve won the lottery, you will need
More informationLO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs.
LO.a: Interpret interest rates as required rates of return, discount rates, or opportunity costs. 1. The minimum rate of return that an investor must receive in order to invest in a project is most likely
More informationPractice Set #1 and Solutions.
Bo Sjö 140503 Practice Set #1 and Solutions. What to do with this practice set? Practice sets are handed out to help students master the material of the course and prepare for the final exam. These sets
More informationBond Price Arithmetic
1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously
More informationChapter 11. Bond Pricing  1. Bond Valuation: Part I. Several Assumptions: To simplify the analysis, we make the following assumptions.
Bond Pricing  1 Chapter 11 Several Assumptions: To simplify the analysis, we make the following assumptions. 1. The coupon payments are made every six months. 2. The next coupon payment for the bond is
More informationHow To Read The Book \"Financial Planning\"
Time Value of Money Reading 5 IFT Notes for the 2015 Level 1 CFA exam Contents 1. Introduction... 2 2. Interest Rates: Interpretation... 2 3. The Future Value of a Single Cash Flow... 4 4. The Future Value
More informationChapter 3. Understanding The Time Value of Money. PrenticeHall, Inc. 1
Chapter 3 Understanding The Time Value of Money PrenticeHall, Inc. 1 Time Value of Money A dollar received today is worth more than a dollar received in the future. The sooner your money can earn interest,
More informationCHAPTER 5 HOW TO VALUE STOCKS AND BONDS
CHAPTER 5 HOW TO VALUE STOCKS AND BONDS Answers to Concepts Review and Critical Thinking Questions 1. Bond issuers look at outstanding bonds of similar maturity and risk. The yields on such bonds are used
More informationCHAPTER 8 INTEREST RATES AND BOND VALUATION
CHAPTER 8 INTEREST RATES AND BOND VALUATION Solutions to Questions and Problems 1. The price of a pure discount (zero coupon) bond is the present value of the par value. Remember, even though there are
More information9. Time Value of Money 1: Present and Future Value
9. Time Value of Money 1: Present and Future Value Introduction The language of finance has unique terms and concepts that are based on mathematics. It is critical that you understand this language, because
More informationThis is Time Value of Money: Multiple Flows, chapter 7 from the book Finance for Managers (index.html) (v. 0.1).
This is Time Value of Money: Multiple Flows, chapter 7 from the book Finance for Managers (index.html) (v. 0.1). This book is licensed under a Creative Commons byncsa 3.0 (http://creativecommons.org/licenses/byncsa/
More informationChapter F: Finance. Section F.1F.4
Chapter F: Finance Section F.1F.4 F.1 Simple Interest Suppose a sum of money P, called the principal or present value, is invested for t years at an annual simple interest rate of r, where r is given
More informationChapter 6 APPENDIX B. The Yield Curve and the Law of One Price. Valuing a Coupon Bond with ZeroCoupon Prices
196 Part Interest Rates and Valuing Cash Flows Chapter 6 APPENDIX B The Yield Curve and the Law of One Price Thus far, we have focused on the relationship between the price of an individual bond and its
More informationCHAPTER 14: BOND PRICES AND YIELDS
CHAPTER 14: BOND PRICES AND YIELDS PROBLEM SETS 1. The bond callable at 105 should sell at a lower price because the call provision is more valuable to the firm. Therefore, its yield to maturity should
More informationThe Institute of Chartered Accountants of India
CHAPTER 4 SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY APPLICATIONS SIMPLE AND COMPOUND INTEREST INCLUDING ANNUITY APPLICATIONS LEARNING OBJECTIVES After studying this chapter students will be able
More informationFixed Income: Practice Problems with Solutions
Fixed Income: Practice Problems with Solutions Directions: Unless otherwise stated, assume semiannual payment on bonds.. A 6.0 percent bond matures in exactly 8 years and has a par value of 000 dollars.
More informationHow To Calculate The Value Of A Project
Chapter 02 How to Calculate Present Values Multiple Choice Questions 1. The present value of $100 expected in two years from today at a discount rate of 6% is: A. $116.64 B. $108.00 C. $100.00 D. $89.00
More informationHow To Value Bonds
Chapter 6 Interest Rates And Bond Valuation Learning Goals 1. Describe interest rate fundamentals, the term structure of interest rates, and risk premiums. 2. Review the legal aspects of bond financing
More informationCHAPTER 14: BOND PRICES AND YIELDS
CHAPTER 14: BOND PRICES AND YIELDS 1. a. Effective annual rate on 3month Tbill: ( 100,000 97,645 )4 1 = 1.02412 4 1 =.10 or 10% b. Effective annual interest rate on coupon bond paying 5% semiannually:
More informationSolutions to Time value of money practice problems
Solutions to Time value of money practice problems Prepared by Pamela Peterson Drake 1. What is the balance in an account at the end of 10 years if $2,500 is deposited today and the account earns 4% interest,
More informationChapter 4. The Time Value of Money
Chapter 4 The Time Value of Money 42 Topics Covered Future Values and Compound Interest Present Values Multiple Cash Flows Perpetuities and Annuities Inflation and Time Value Effective Annual Interest
More informationIntroduction to Real Estate Investment Appraisal
Introduction to Real Estate Investment Appraisal Maths of Finance Present and Future Values Pat McAllister INVESTMENT APPRAISAL: INTEREST Interest is a reward or rent paid to a lender or investor who has
More informationMBA Financial Management and Markets Exam 1 Spring 2009
MBA Financial Management and Markets Exam 1 Spring 2009 The following questions are designed to test your knowledge of the fundamental concepts of financial management structure [chapter 1], financial
More informationAppendix. Time Value of Money. Financial Accounting, IFRS Edition Weygandt Kimmel Kieso. Appendix C 1
C Time Value of Money C 1 Financial Accounting, IFRS Edition Weygandt Kimmel Kieso C 2 Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount.
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER : THE TERM STRUCTURE OF INTEREST RATES CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
More information